Potensi Bakteri Tanah Penghasil Senyawa Antimikrob Untuk Menghambat Pertumbuhan Bakteri Escherichia Coli dan Staphylococcus Aureus
DOI:
https://doi.org/10.57213/nurse.v4i1.234Keywords:
Actinobacteria, Antibiotics, Chloramphenicol, Pathogenic, ResistanceAbstract
Antimicrobials are molecules that inhibit the growth of microbes. Some bacterial species, consisting of actinomycetes and fungi, are capable of producing antimicrobial substances. Streptomyces, commonly referred to as soil bacteria, are a group of actinomycetes that produce multiple antimicrobial agents. Other soil bacteria that may produce antibiotics include Pseudomonas, Bacillus, Nocardia, Kibdelosporangium, and Roseobacter. Thereby, soil is one of the potential sources that is capable of being used as a research sample for discovering and collecting antibiotic-producing bacteria, especially new types of antibiotics that weren't previously discovered. The latest research about antimicrobials (antibiotics) has been driven by the high number of cases of bacterial resistance. The study aims to investigate the potential of antimicrobial-producing bacteria from the soil to inhibit the pathogenic bacteria Staphylococcus aureus and Escherichia coli. The research procedure involves soil sampling, isolating the antimicrob-producing bacteria, describing the morphology of the bacterial colony and bacterial cells, purifying and regenerating the bacterial culture, and testing the activity of antimicrobial substances against E. coli and S. aureus. The study revealed four bacterial isolates: E1, E2, S1, and S2, that could possibly suppress the growth of S. aureus and E. coli. However, the antimicrobial activity of the four bacteria remained considerably smaller compared with 100 mg of chloramphenicol.
References
Al-Zereini, W. (2014). Bioactive crude extracts from four bacterial isolates of marine sediments from Red Sea, Gulf of Aqaba, Jordan. Jordan Journal of Biosciences, 7(2), 133–137.
Balbi, H. J. (2004). Chloramphenicol – A review. Pediatrics in Review, 25(8), 284–282. https://doi.org/10.1542/pir.25-8-284
Bantawa, K., Sah, S. N., Limbu, D. S., Subba, P., & Ghimire, A. (2019). Antibiotic resistance patterns of Staphylococcus aureus, Escherichia coli, Salmonella, Shigella, and Vibrio isolated from chicken, pork, buffalo, and goat meat in Eastern Nepal. BMC Research Notes, 17(766), 1–6. https://doi.org/10.1186/s13104-019-4798-7
Bitrus, A. A., Peter, O. M., Abbas, M. A., & Goni, M. D. (2018). Staphylococcus aureus: A review of antimicrobial resistance mechanisms. Veterinary Sciences: Research and Reviews, 4(2), 43–54. http://dx.doi.org/10.17582/journal.vsrr/2018/4.2.43.54
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13, 42–51. https://doi.org/10.1038/nrmicro3380
Ezebialu, C. U., Awuribeh, I. B., Eze, E. M., Ogu, C. T., Nwankwo, U. G., & Afunwa, R. A. (2020). Screening and characterization of antibiotic producing organisms from waste dump soil sample. Advances in Microbiology, 10, 422–433. https://doi.org/10.4236/aim.2020.10903
Fedorenko, V., Genilloud, O., Horbal, L., Letizia, M., Marinelli, F., Paitan, Y., & Ron, E. Z. (2015). Antibacterial discovery and development: From gene to product and back. BioMed Research International, 2015, 591349. http://dx.doi.org/10.1155/2015/591349
Frickmann, H., Hahn, A., Berlec, S., Ulrich, J., Jansson, M., Schwarz, N. G., Warnke, P., & Podbielski, A. (2019). On the etiological relevance of Escherichia coli and Staphylococcus aureus in superficial and deep infections – A hypothesis-forming, retrospective assessment. European Journal of Microbiology & Immunology, 9(4), 124–130. https://doi.org/10.1556/1886.2019.00021
Katara, S., Devki, Gupta, V., Neelam, D., & Rahi, R. K. (2020). Role of bacteria and fungi in antibiotic production. Pharma Innovation Journal, 10(1), 709–714.
Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: From targets to networks. Nature Reviews Microbiology, 8(6), 423–435. https://doi.org/10.1038/nrmicro2333
Kumar, R. R., & Jadeja, V. J. (2018). Characterization and partial purification of an antibacterial agent from halophilic actinomycetes Kocuria sp. strain RSK4. BioImpacts, 8(4), 253–261. https://doi.org/10.15171/bi.2018.28
Mast, Y., & Stegmann, E. (2019). Actinomycetes: The antibiotics producers. Antibiotics, 8(105), 1–4. https://doi.org/10.3390/antibiotics8030105
Muhammad, Z. K. (2014). Uji aktivitas antibakteri ekstrak dan fraksi daun sintok (Cinnamomum sintoc Blume.) terhadap Staphylococcus aureus dan Pseudomonas aeruginosa serta analisa komponen senyawa fraksi aktif dengan kromatografi gas spektrometri massa [Skripsi, Universitas Islam Negeri Syarif Hidayatullah, Jakarta, Indonesia].
Peterson, E., & Kaur, P. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9, 2928. https://doi.org/10.3389/fmicb.2018.02928
Procópio, R. E., Silva, I. R., Martins, M. K., Azevedo, J. L., & Araújo, J. M. (2012). Antibiotics produced by Streptomyces. Brazilian Journal of Infectious Diseases, 16(5), 466–471. https://doi.org/10.1016/j.bjid.2012.08.014
Rafiq, A., Khan, S. A., Akbar, A., Shafi, M., Ali, I., Rehman, F. U., Rashid, R., Shakoor, G., & Anwar, M. (2018). Isolation and identification of antibiotic-producing microorganisms from soil. International Journal of Pharmaceutical Science Research, 9(3), 1002–1011. https://doi.org/10.13040/IJPSR.0975-8232.9(3).1002-1011
Ranjan, R., & Jadeja, V. (2017). Isolation, characterization, and chromatography-based purification of antibacterial compound isolated from rare endophytic actinomycetes Micrococcus yunnanensis. Journal of Pharmaceutical Analysis, 7, 343–347. http://dx.doi.org/10.1016/j.jpha.2017.05.001
Retnowati, Y., Sembiring, L., Moeljopawiro, S., Djohan, T. S., & Soetarto, E. S. (2017). Diversity of antibiotic-producing actinomycetes in mangrove forest of Torosiaje Gorontalo Indonesia. Biodiversitas, 18(3), 1453–1461. https://doi.org/10.13057/biodiv/d180322
Sethi, S., Kumar, R., & Gupta, S. (2013). Antibiotic production by microbes isolated from soil. International Journal of Pharmaceutical Sciences and Research, 4(8), 2967–2973.
Sudarmadi, A. A. M., Prajitno, S., & Widodo, A. D. W. (2020). Antibiotic resistance in Escherichia coli and Staphylococcus aureus from retail chicken meat in Surabaya, Indonesia. Biomolecular and Health Science Journal, 3(2), 109–113. https://doi.org/10.20473/bhsj.v3i2.22170
Sunatmo, T. I. (2012). Mikrobiologi esensial 2. Bogor: Ardy Agency.
Thiruchenduran, S., Supraja, N., & Prasad, T. N. V. K. V. (2018). Synthesis, characterization, antimicrobial and antioxidant assay of Costus igneus bio-active compounds loaded zinc nanoparticles for nano and bioactive applications. Research in Medical & Engineering Sciences, 5(5), 1–6. https://doi.org/10.31031/RMES.2018.05.000624
Ueda, K., & Beppu, T. (2016). Antibiotics in microbial coculture. The Journal of Antibiotics, 70, 361–365. https://doi.org/10.1038/ja.2016.127
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jurnal Nurse
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.